0=((-5x^2)-10x+120)

Simple and best practice solution for 0=((-5x^2)-10x+120) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=((-5x^2)-10x+120) equation:



0=((-5x^2)-10x+120)
We move all terms to the left:
0-(((-5x^2)-10x+120))=0
We add all the numbers together, and all the variables
-(((-5x^2)-10x+120))=0
We calculate terms in parentheses: -(((-5x^2)-10x+120)), so:
((-5x^2)-10x+120)
We calculate terms in parentheses: +((-5x^2)-10x+120), so:
(-5x^2)-10x+120
We get rid of parentheses
-5x^2-10x+120
Back to the equation:
+(-5x^2-10x+120)
We get rid of parentheses
-5x^2-10x+120
Back to the equation:
-(-5x^2-10x+120)
We get rid of parentheses
5x^2+10x-120=0
a = 5; b = 10; c = -120;
Δ = b2-4ac
Δ = 102-4·5·(-120)
Δ = 2500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{2500}=50$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-50}{2*5}=\frac{-60}{10} =-6 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+50}{2*5}=\frac{40}{10} =4 $

See similar equations:

| 0=((5x^2)+10x+120) | | 0=5x^2+10x+120 | | 13x-15+8=4x+2=24 | | 27+6.0x=8.25x | | 4/14y=3/7 | | -3/4x-5=-9 | | 7-a=a-15 | | 3k+1=-2(k-8) | | 5y-6=44.20 | | 5x+68=180 | | x*0.375+(x*2)=38 | | 10w-17=96 | | 9/3h-1/3h+11=11 | | -10-5x-132=-4x+40+12x | | 12+4y-24=0 | | 16.8-v=-6 | | 4y-1=113 | | 4=t/3 | | 9y-4y-6=44.20 | | 5–2x=11 | | 6y-y=5y+1 | | -6+4b+8+6b=-13 | | -w=-10 | | 8x-3+4x+39=180 | | -7(2x+3)=21 | | 19x-5=180 | | x-9=x÷2+7 | | -(2x+5)=11 | | 0.75(6x+2)=15 | | u-1=6 | | 3(2w+2)=2(3w+3) | | 1/3(3x-1)=-1/7-3/7 |

Equations solver categories